
Generalized derivatives

Lila KARI∗

Academy of Finland and Department of Mathematics,

University of Turku, 20500 Turku, Finland

Abstract. The customary language-theoretic derivative of a word u with re-

spect to a word v means the deletion of v from the beginning or end of u. We

investigate the natural generalization, where v can be deleted from an arbitrary

position in u. Apart from general closure and decidability properties, we pay

special attention to regular languages, obtaining an exhaustive characteriza-

tion.

1. Introduction

The left (right) quotient is a very basic language operation central to formal language
theory. For example the derivatives, which are particular cases of quotients, are closely
connected to the minimal finite deterministic automata (see [3]), the quotient has vari-
ous interconnections with other operations, it can lead to interesting decision problems,
and so on. Moreover, the left (right) quotient appears in some practical applications of
formal language theory. For instance, under some language representations of images,
zooming is accomplished with the quotient operation. See [2] for details.

A natural generalization of the left (right) quotient is the deletion operation defined
in [6]. The deletion of a word v from a word u consists of erasing v not only from the
left (right) extremity of u but from an arbitrary place in u. If v is not a subword of u,
the result of the deletion is the empty set. The operation can be extended to languages
in the obvious fashion. Deletion can be viewed as a one step rewriting relation of a
special semi-Thue system (see [1], [5], [7] for details).

In this paper we will consider only the particular case in which the language to be
deleted is a singleton. The resulting operation, called derivative, generalizes both left
and right derivative operations.

Besides closure properties of the families of the Chomsky hierarchy under derivatives
we investigate some properties of the derivatives of regular languages.

A sufficient condition under which a language gives rise to the same derivative with
respect to two different words is obtained. Moreover, it is shown that the language
consisting of all words, with respect to which a given regular language has the same
derivative, is regular.

Also languages with maximal number of derivatives are studied. The main result
shows that, for each integer n, there exists a minimal finite deterministic automaton
with n states, which recognizes a language with maximal number of derivatives.
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Finally, the decision problem ”Given languages L and R, does there exist a word w
such that ∂wL = R?” is considered. The problem turns out to be decidable for regular
languages L and R, but undecidable for more complex families of languages.

2. Basic definitions and notations

For a vocabulary Σ, we denote by Σ∗ the free monoid generated by Σ under the cate-
nation operation; the null element of Σ∗ is λ and lg(v) denotes the length of the word
v ∈ Σ∗. For other notations and formal language theory notions like left (right) quo-
tient, minimal finite deterministic automaton, generalized sequential machine, linear
erasing morphism, the reader is referred to [9].

In studying the left and right quotient as operations on languages, of special interest
is the case where the language to be deleted is a singleton.

The left derivative of a language L over Σ with respect to a word w ∈ Σ∗ is obtained
as a particular case of left quotient:

∂l
wL = {u ∈ Σ∗| wu ∈ L}.

The right derivative of the language L with respect to the word w is defined simi-
larily as:

∂r
wL = {u ∈ Σ∗| uw ∈ L}.

A natural generalization of the right and left derivative is the operation where the
word w is extracted not from the left or right extremity of a word in L but from an
arbitrary place in it.

Definition 1 Let L be a language and w be a word over the alphabet Σ. The generalized
derivative (shortly, derivative) of L with respect to w is defined as:

∂wL = {uv ∈ Σ∗| uwv ∈ L}.

Example 1 Let L = {abbbab, aaabbb, abab} and w = ab. The derivative of L with
respect to w is:

∂wL = {bbab, abbb, aabb, ab}

whereas the left and right derivatives are respectively:

∂l
wL = {bbab, ab}, ∂r

wL = {abbb, ab}.

The derivative is a nondeterministic version of left (right) derivative in the sense
that the left (right) derivative ∂l

wu (∂r
wu) consists of at most one word, whereas the

derivative ∂wu is in general a set of words of cardinality greater than one.
Note that in the previous example, ∂wL properly contains the union ∂l

wL∪ ∂r
wL. In

general, we have that
∂l

wL ∪ ∂r
wL ⊆ ∂wL.

The left and right derivative can be obtained using the derivative and a marker
which forces the position of the deletion. Indeed, for a language L and a word w over
Σ we have

∂l
wL = ∂$w($L),

∂r
wL = ∂w$(L$),

where $ is a new symbol which does not belong to Σ.



3. Closure properties

In this section we investigate the closure properties of the families in the Chomsky hier-
archy under derivative. In order to prove the closure of REG and CF under derivative,
we show first that the derivative of a language can be attained by a gsm with erasing.

Theorem 1 Let L be a language and w be a nonempty word over the same alphabet
Σ. There exists a gsm g such that

∂wL = g(L).

Proof. Let w be of the form w = a1a2 . . . an, n ≥ 1, ai ∈ Σ for 1 ≤ i ≤ n. Construct
the gsm with erasing:

g = (Σ, Σ, {si| 0 ≤ i ≤ n}, s0, {sn}, P ),
P = {s0a−→as0| a ∈ Σ}∪

{siai+1−→si+1| 0 ≤ i ≤ n − 1}∪
{sna−→asn| a ∈ Σ}.

The gsm g satisfies the requested equality.
Indeed, given a word v ∈ L as an input, the gsm g works as follows. If w is a

subword of v then the rules of the type siai+1−→si+1 erase an occurrence of w from
v, while the rules of the type s0a−→as0 and sna−→asn leave the other letters of v
unchanged. The output in this case is therefore ∂wv. If the input word v does not
contain w as a subword, the final state of g cannot be reached and therefore no output
is produced.

Corollary 1 The families of regular and context-free languages are closed under deriva-
tive.

The closure of CS under derivative is obtained by modifying the proof of Theorem
1 such that the involved gsm is λ-free.

Theorem 2 The family of context-sensitive languages is closed under derivatives.

Proof. Let L be a context-sensitive language over an alphabet Σ and w = a1 . . . an,
n ≥ 1, ai ∈ Σ, 1 ≤ i ≤ n, be a word over the same alphabet. If w ∈ L then

∂wL = [∂w(L − {w})] ∪ {λ}.

If w = λ then ∂λL = L. Therefore the theorem will hold if we prove that ∂wL is
context-sensitive for w nonempty and not belonging to L.

We can modify the proof of Theorem 1 such that the constructed gsm is λ-free.
Indeed, let # be a new symbol which does not occur in Σ and consider the gsm:

g = (Σ, Σ ∪ {#}, {s0, s1, . . . , sn}, s0, {sn}, P ),
P = {s0a−→as0| a ∈ Σ}∪

{siai+1−→#ai+1| 0 ≤ i ≤ n − 1}∪
{sna−→asn| a ∈ Σ}.

It is easy to see that if h : (Σ∪ {#})∗−→Σ∗ is the morphism defined by h(#) = λ,
h(a) = a, ∀ a ∈ Σ then:

h(g(L)) = ∂wL.



As lg(w) = n, for every word α ∈ g(L) the following inequality holds:

lg(α) ≤ (n + 1)lg(h(α))

which proves that h is an (n + 1)- linear erasing with respect to g(L).
As CS is closed under λ-free gsm mapping and under linear erasing, it follows that

it is closed under derivatives, too.

4. Derivatives of regular languages

In this section, some properties of the derivatives of regular languages are dealt with.
Before that, some supplementary notions will be introduced. Let L be a regular lan-
guage and A = (S, Σ, s0, F, P ) a finite deterministic automaton that accepts it. For
every word w ∈ Σ∗ define the function fA

w : S−→S as follows:

fA
w (s) = s′ iff sw=⇒∗s′ in A.

The function is total. If the automaton is clear from the context, we will denote the
function simply by fw.

Let L be a language over an alphabet Σ. The relations EL and ≡L over Σ∗, referred
to as the equivalence and the congruence relation induced by L are defined as follows.
uELw iff, for all y ∈ Σ∗, uy is in L exactly when wy is in L. u ≡L w iff, for all x, y ∈ Σ∗,
xuy ∈ L exactly when xwy ∈ L. Details about the equivalence and congruence relations
induced by languages can be found for example in [8], pp.27-31, [4], pp.65-67.

It is known that uELw iff the left derivatives of L with respect to u and w coincide,
that is, ∂l

uL = ∂l
wL. As regards the congruence relation, u ≡L w iff fu = fw in a

minimal finite deterministic automaton that accepts L. (Here minimal refers to the
number of states.) Obviously, if u ≡L w then ∂uL = ∂wL. The reverse implication
does not hold, as proved by the following example.

Example 2 Let L = (ababa)∗ and w1 = babaa, w2 = baaba, w3 = abaab, w4 = aabab.
Then we have:

∂wi
L = (ababa)+, for i = 1, 2, 3, 4,

but wi 6≡L wj for i 6= j. For instance, aw1baba ∈ L but awibaba does not belong to L
for i 6= 1.

The derivatives define an equivalence relation DL over Σ∗ by uDLv iff ∂uL = ∂vL.
DL is an equivalence relation with a ”coarser” class division than ≡L: each equivalence
class of DL consists of one or more classes of ≡L.

In the following a sufficient condition under which a language gives rise to the same
derivative with respect to two different words will be given.

Theorem 3 Let L be a regular language accepted by the deterministic automaton A =
(S, Σ, s0, F, P ) and u, v words over Σ∗. If fu = fv then ∂uL = ∂vL.

Proof. Let α be a word in ∂uL. There exist α1, α2 ∈ Σ∗ and w ∈ L such that α = α1α2

and w = α1uα2. Consequently, the derivation:

s0α1uα2=⇒
∗s1uα2=⇒

∗s2α2=⇒
∗sf , sf ∈ F,



exists in the automaton A.
According to the definition of fu : S−→S, we have s2 = fu(s1). As fu = fv it follows

that s2 = fv(s1) and consequently the derivation s1v=⇒∗s2 exists in A. Therefore the
following derivation can be constructed in A:

s0α1vα2=⇒
∗s1vα2=⇒

∗s2α2=⇒
∗sf , sf ∈ F.

We have used the derivation s0α1uα2=⇒
∗sf where the subderivation s1u=⇒∗s2 has

been replaced by s1v=⇒∗s2. This proves that the word α1vα2 belongs to L which
implies that α1α2 belongs to ∂vL.

The reverse inclusion can be proved similarily.

The converse of the theorem does not hold, as shown by the following example.

Example 3 Let L = {ab, ca} and let A = (S, Σ, s0, F, P ) be a finite deterministic
automaton that accepts it, where:

S = {s0, s1, s2, s3, s4, s
′},

F = {s2, s4},
Σ = {a, b, c},
P = {s0a−→s1, s0b−→s′, s0c−→s3}∪

{s1a−→s′, s1b−→s2, s1c−→s′}∪
{s2a−→s′, s2b−→s′, s2c−→s′}∪
{s3a−→s4, s3b−→s′, s3c−→s′}∪
{s4a−→s′, s4b−→s′, s4c−→s′}∪
{s′a−→s′, s′b−→s′, s′c−→s′}.
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Figure 1: The automaton from Example 4.4.

The automaton A is represented in Figure 1. The state s′ is a ”garbage” state,
introduced only to make the automaton deterministic. It has been omitted from the
figure, for reasons of clarity.

The derivative of L with respect to both b and c equals {a} but the functions fb

and fc are not equal: fb(s1) = s2 whereas fc(s1) = s′.

Corollary 2 A regular language L has at most nn different derivatives, where n is
number of states in a minimal finite deterministic automaton accepting L.



Proof. Let L be a regular language accepted by a minimal finite deterministic au-
tomaton A = (S, Σ, s0, F, P ) with n states. The number of different total functions
f : S−→S is k = nn. Using the previous theorem we deduce that there exist at most
k different derivatives of L.

Example 4 Let us consider the minimal finite deterministic automaton A = (S, Σ,
s0, F, P ) where

S = {s0, s1},
Σ = {a1, a2, a3, a4},
F = {s0},
P = {s0a1−→s0, s1a1−→s1}∪

{s0a2−→s0, s1a2−→s0}∪
{s0a3−→s1, s1a3−→s1}∪
{s0a4−→s1, s1a4−→s0}.
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Figure 2: The automaton from Example 4.5.

The automaton A is represented in Figure 2.
The words a1, a2, a3, a4 determine respectively the functions:

a1 : f1(s0) = s0, f1(s1) = s1,
a2 : f2(s0) = s0, f2(s1) = s0,
a3 : f3(s0) = s1, f3(s1) = s1,
a4 : f4(s0) = s1, f4(s1) = s0.

According to the preceding corollary, the maximum number of different derivatives

that L(A) = L can have is card(S)card(S) = 4. In order to show that L has 4 different
derivatives we will prove that ∂a1

L, ∂a2
L, ∂a3

L, ∂a4
L are all different.

The word a3a2a1 is in L therefore a3a1 ∈ ∂a2
L. But a3a1 is not in ∂a1

L because
neither a1a3a1 nor a3a1a1 belongs to L. Consequently, ∂a2

L 6= ∂a1
L.

The word a1a1 belongs to L therefore a1 ∈ ∂a1
L. However, a1 is neither in ∂a3

L nor
in ∂a4

L as none of the words a1a3, a3a1, a1a4, a4a1 is in L. Consequently, ∂a3
L 6= ∂a1

L
and ∂a4

L 6= ∂a1
L.

The word a2a1 belongs to L, therefore a1 ∈ ∂a2
L. But, as none of the words

a3a1, a1a3, a4a1, a1a4 is in L, a1 belongs neither to ∂a3
L nor to ∂a4

L. Consequently,
∂a3

L 6= ∂a2
L and ∂a4

L 6= ∂a2
L.

The word a3a4a1 belongs to L, therefore a3a1 ∈ ∂a4
L. But a3a1 does not belong to

∂a3
L because neither a3a3a1 nor a3a1a3 is in L. Consequently, ∂a3

L 6= ∂a4
L.

The derivatives ∂a1
L, ∂a2

L, ∂a3
L, ∂a4

L are pairwise distinct. Consequently, the
language L has four different derivatives which is the maximal number of derivatives
it can have.



Let A = (S, Σ, s0, F, P ) be a finite deterministic automaton. Two states s, s′ ∈ S
are called distinguishable if there exists a word u ∈ Σ∗ such that su=⇒∗s1, s′u=⇒∗s′1
and s1 ∈ F , s′1 6∈ F , or viceversa. A finite deterministic automaton in which all states
are distinguishable is minimal for its language (see [4], pp.68-71).

Using the method developed in the previous example we can prove a more general
result.

Theorem 4 Let n be a natural number, n ≥ 1. There exists a minimal finite de-
terministic automaton An, with n states, such that the language accepted by An has
nn different derivatives. Moreover, no other language accepted by a minimal finite
deterministic automaton with n states has more different derivatives.

Proof. Let n ≥ 1 be a natural number and An be the automaton:

An = (S, Σ, s1, F, P ),
S = {s1, s2, . . . , sn},
Σ = {f | f : S−→S},
F = {s1},
P = {sif−→sj | si, sj ∈ S, f ∈ Σ, and f(si) = sj}.

Clearly, An is a finite deterministic automaton. A is also minimal. This follows because
any two distinct states si and sj are 1-distinguishable, i.e., a letter distinguishes them.
Such a letter is f which, viewed as a function, maps si into s1 and sj into s2.

We shall show in the following that the language L = L(An) has nn different
derivatives.

If n = 1 then card(Σ) = nn = 1. The language accepted by the automaton A1 is
L = {f p| p ≥ 0} and has one derivative, ∂fL = L.

If n > 1, as card(Σ) = nn, the proof is complete if we show that for every a, b ∈ Σ,
a 6= b we have ∂aL 6= ∂bL. Let a, b be two distinct letters in Σ. One of the following
cases holds:

(i) a(s1) 6= b(s1).
If this is the case, then either a(s1) 6= s1 or b(s1) 6= s1. Assume that the first alter-

native holds, the other one being similar. Choose f ∈ Σ with the following properties:

f(s1) = s1, f(a(s1)) = a(s1), f(b(s1)) = s1.

The word bf belongs to L as we can construct the derivation:

s1bf=⇒b(s1)f=⇒f(b(s1)) = s1,

according to An. Consequently, f is a word in ∂bL. However, f does not belong to ∂aL
as neither af nor fa belong to L:

s1af=⇒a(s1)f=⇒f(a(s1)) = a(s1) 6= s1,
s1fa=⇒f(s1)a = s1a=⇒a(s1) 6= s1.

Consequently, if (i) holds then ∂aL 6= ∂bL.
(ii) a(s1) = b(s1) and a(si) 6= b(si) for some 1 < i ≤ n.
If this is the case then either a(si) 6= s1 or b(si) 6= s1. Assume that a(si) 6= s1, the

other alternative being similar. We now consider two subcases.
(ii)′ b(si) 6= si.



Choose f, g ∈ Σ with the properties:

f(x) = si, ∀x ∈ S,
g(x) = si, ∀x ∈ S, x 6= b(si) and g(b(si)) = s1.

The word fbg belongs to L as we can construct the derivation:

s1fbg=⇒f(s1)bg = sibg=⇒b(si)g=⇒g(b(si)) = s1,

according to An. This implies that fg belongs to ∂bL. However, fg is not a word in
∂aL as none of the words afg, fag, fga is in L:

s1afg=⇒a(s1)fg=⇒f(a(s1))g = sig=⇒g(si) = si 6= s1,

(we have used the fact that b(si) 6= si)

s1fag=⇒f(s1)ag = siag=⇒a(si)g=⇒g(a(si)) = si 6= s1,

(we have used the fact that a(si) 6= b(si))

s1fga=⇒f(s1)ga = siga=⇒g(si)a = sia=⇒a(si) 6= s1,

(we have used the facts that b(si) 6= si and a(si) 6= s1).
Consequently, if (ii)′ holds then ∂aL 6= ∂bL.
(ii)′′ b(si) = si.
As si 6= s1, the above equality implies b(si) 6= s1. As a(si) 6= b(si) and b(si) = si

we deduce that a(si) 6= si. Therefore we are now in the case b(si) 6= s1 and a(si) 6= si,
which is symmetric to (ii)′ (with a and b switching their roles). Consequently, also if
this case holds we obtain ∂aL 6= ∂bL.

As, in all the possible cases we found that ∂aL 6= ∂bL, we deduce that the two
derivatives are distinct. The two letters a, b were arbitrarily chosen from Σ, therefore
we conclude that all the nn elements of Σ produce derivatives which are pairwise
distinct. Consequently, L = L(An) has nn diffferent derivatives. The second claim of
the theorem follows from Corollary 2.

The following theorem shows that the language consisting of the words with respect
to which a given regular language has the same derivative is regular.

Theorem 5 Let L be a regular language over the alphabet Σ. For any word w ∈ Σ∗

the language:
Lw = {v ∈ Σ∗| ∂wL = ∂vL}

is regular and can be effectively constructed.

Proof. Let A = (S, Σ, s0, F, P ) be a finite deterministic automaton that accepts the
language L.

For every state s ∈ S and every function f : S−→S define:

Ls,f = {w ∈ Σ∗| sw=⇒∗f(s)}

and
Lf =

⋂
s∈S

Ls,f .

Each of the languages Ls,f is regular and each Lf is regular as a finite intersection
of regular languages.



Claim.

Lf = {w ∈ Σ∗| fw = f}.

” ⊆ ” Let w be a word in Lf . As w ∈ Ls,f for every state s ∈ S, the derivation
sw=⇒∗f(s) exists in the automaton A for every s ∈ S.

According to the definition of fw : S−→S, the derivation sw=⇒∗fw(s) exists in A for
every s ∈ S. As the automaton A is a deterministic one, we deduce that f(s) = fw(s)
for every state s ∈ S, that is, f = fw.

” ⊇ ” Let w ∈ Σ∗ be a word such that f(s) = fw(s) for every s ∈ S. Then, for
every state s ∈ S we have:

w ∈ Ls,f = {w ∈ Σ∗| sw=⇒∗f(s) = fw(s)}

that is,
w ∈

⋂
s∈S

Ls,f = Lf ,

and the equality is proved.
The claim shows that the family {Lf}f :S−→S determines a finite partition of Σ∗ into

disjoint regular languages Lf . To a set Lf belong those and only those words w such
that fw = f . To prove the theorem we show that for a given w ∈ Σ∗, Lw is a union of
some of the languages Lf .

There exist k = card(S)card(S) different functions f : S−→S. Given a word w ∈ Σ∗

we construct:
L′ =

⋃k
i=1 {Lfi

| fi : S−→S and
∃ v ∈ Lfi

: ∂vL = ∂wL}.

The language L′ is nonempty, containing at least the word w. We will prove in the
following that L′ = Lw where Lw is the language mentioned in the statement of the
theorem.

Indeed, let u ∈ L′. There exist i ≤ k and fi : S−→S such that u ∈ Lfi
and

∂vL = ∂wL for some v ∈ Lfi
. According to the previous claim, fu = fv = fi.

According to Theorem 3, ∂uL = ∂vL and therefore ∂uL = ∂vL = ∂wL. This implies
that u belongs to Lw.

For the reverse inclusion, let u be a word in Lw. There exists i ≤ k such that the
function fu : S−→S equals the function fi : S−→S. As, according to the definition of
Lw, ∂uL = ∂wL it follows that u belongs to the set

{Lfi
| fi : S−→S and ∃u ∈ Lfi

: ∂uL = ∂wL}

that is u belongs to L′. The equality L′ = Lw is therefore proved. As L′ is a regular
language it follows that Lw is a regular language.

Using the above equality, for every word w the language Lw can be effectively
constructed. Indeed, the sets Ls,f , Lf can be constructed for every f : S−→S and
every state s ∈ S.

In order to construct L′ we use the remark that, for a total function fi : S−→S, all
the words in Lfi

give the same derivative with respect to L. This means that, for any
function fi : S−→S it suffices to check the equality ∂vL = ∂wL for an arbitrary word
v ∈ Lfi

. If the answer is YES, the set Lfi
is taken into the union, else the function fi+1

is tried. The process terminates as the number of different functions to be checked is
finite.

Note that REG is closed under derivative (see Corollary 1). The equivalence prob-
lem is decidable for regular languages that is, the problem ”Is ∂vL equal with ∂wL?”
is decidable for regular languages L.



Corollary 3 Let L be a regular language over an alphabet Σ. For any word w ∈ Σ∗

the languages:
Ll

w = {v ∈ Σ∗| ∂l
wL = ∂l

vL},

Lr
w = {v ∈ Σ∗| ∂r

wL = ∂r
vL}

are regular and can be effectively constructed.

Proof. Let L be a language and w be a word over Σ and let $ be a symbol which does
not occur in Σ. Consider L′ = $L (resp. L$) and w′ = $w (resp. w$). Then

Ll
w = ($\{v ∈ (Σ ∪ {$})∗| ∂w′L′ = ∂vL

′}) ∩ Σ∗

(resp. Lr
w = ({v ∈ (Σ ∪ {$})∗| ∂w′L′ = ∂vL

′}/$) ∩ Σ∗).

Using the preceding theorem and the fact that REG is closed under left (right) quotient
and intersection with regular languages, we deduce that the languages Ll

w and Lr
w are

regular and can be effectively constructed.

5. Decision problems

In the previous section we have seen that there are finitely many languages that can
be obtained from a regular one by derivative. Given two regular languages, a natural
problem that arises is whether or not the second language can be obtained from the
first by derivative.

In this section we investigate a more general problem, namely,

”Given languages L and R, does there exist a word w such that ∂wL = R?”.

The problem turns out to be decidable for regular languages L and R and unde-
cidable for context-free languages L and regular languages R as well as for regular
languages L and context-free languages R.

In order to show that the problem is decidable for regular languages L and R, an
auxiliary result is needed.

Theorem 6 The (finitely many) languages that can be obtained from a regular one by
derivative can be effectively constructed.

Proof. Let L be a regular language accepted by a minimal finite deterministic automa-
ton A = (S, Σ, s0, F, P ) with n states. According to Corollary 2, there exist at most
k = nn different derivatives of L.

For each i, 1 ≤ i ≤ k, consider the corresponding function fi : S−→S and the
language

Lfi
= {w ∈ Σ∗| fw = fi}.

As it has been seen in the proof of Theorem 5, Lfi
are regular languages and can

be effectively constructed for all i, 1 ≤ i ≤ k.
We construct now the list containing all the derivatives of L as follows.
Begin
List(q) := ∅, 1 ≤ q ≤ k,
i := 1, j := 1



while i ≤ k do
if Lfi

6= ∅ then choose an arbitrary word wi ∈ Lfi
,

j := j + 1, List(j) := ∂wi
L

endif
endwhile

end
Note that, as the proof of Theorem 1 is constructive, we can effectively obtain the

derivatives ∂wi
L of the regular language L.

The list obtained in this way contains all the languages that can be possibly obtained
from L by derivative. As the equivalence problem is decidable for regular languages,
the duplicates can be eliminated from the list.

Corollary 4 The problem ”Does there exist a word w such that ∂wL = R?” is decidable
for regular languages L and R.

Proof. According to the preceding theorem, we can construct a list containing those
and only those languages that can be obtained from L by derivative. If one of them
equals R, the answer to our problem is YES, otherwise it is NO.

Note that in the case of an YES answer the proof of Theorem 6 effectively provides
also the set of words

D = {w ∈ Σ∗| ∂wL = R}.

Indeed, the set D can be obtained by taking the union of all those languages Lfi
,

1 ≤ i ≤ k, with the property ∂wi
L = R for wi ∈ Lfi

.

Taking into account an observation made at the end of Section 2., we can rewrite
the proofs of Theorem 6 and Corollary 4 for the left (right) derivatives obtaining the
following known results.

Theorem 7 A regular language has finitely many left(right) derivatives. They can be
effectively constructed.

Corollary 5 The problem ”Does there exist a word w such that ∂l
wL = R (respectively

∂r
wL = R)?” is decidable for regular languages L and R. One can also effectively

construct the set

Dl = {w| ∂l
wL = R}(respectively Dr = {w| ∂r

wL = R}).

In the following, some undecidability results are proved. We begin with the simplest
case, where the operation considered is the left (right) quotient.

Theorem 8 The problem ”Does there exist a word w such that ∂l
wL = R?” is unde-

cidable for context-free languages L and regular languages R.

Proof. Let Σ be an alphabet, card(Σ) ≥ 2, and let # be a letter which does not occur
in Σ. There exists a regular language R = #Σ∗ such that the problem of the theorem
is undecidable for context-free languages L.

Indeed, the equation ∂l
w(#L) = #Σ∗ holds for languages L and words w over Σ

exactly in the case w = λ and L = Σ∗. Hence, if we could decide the problem of the
theorem, we would be deciding the problem ”Is L = Σ∗?” for context-free languages
L, which is impossible.



The problem ”Does there exist a word w such that ∂r
wL = R?” is undecidable for

context-free languages L and regular languages R. Indeed, if we take R = Σ∗# and
for a context-free L ⊆ Σ∗ consider the language L#, the proof is analogous to that of
the preceding theorem.

Theorem 9 The problem ”Does there exist a word w such that ∂wL = R?” is unde-
cidable for context-free languages L and regular languages R.

Proof. Let Σ be an alphabet, card(Σ) ≥ 2, and let #, $ be letters which do not occur
in Σ. There exists a regular language R = #Σ∗ such that the problem of the theorem
is undecidable for context-free languages L. We assume the contrary and show how to
solve the problem ”Is L = Σ∗?” for context-free languages L.

Let L ⊆ Σ∗ be a context-free language and consider the language $#L.
The equation

∂w(#Σ+# ∪ $L$) = #Σ+# ∪ $Σ∗$ (∗)

holds if and only if w = λ and L = Σ∗.
Consequentlly, if we could decide the problem of the theorem, we could decide

whether for given context-free languages L, there exists a solution w to the equation
(∗). This would, in turn, imply that we could decide the problem ”Is L = Σ∗?” for
context-free languages L, which is impossible.

6. Open problems

The generalization of the left (right) derivative defined in this paper is the simplest and
most natural one. Some more sophisticated types of derivatives can be considered. For
example, one can define the parallel derivative of u by w (all nonoverlapping occurrences
of w are simultaneously deleted from u), the permuted scattered derivative (the letters
of w are deleted from u regardless of their positions) or the controlled derivative (the
word w is deleted only if it appears after a ”control letter” in u). These and other
generalizations of left (right) derivatives have been defined in [6],[10], and some of
their properties have been investigated. For these operations, the study of problems
analogous to the ones presented here for derivatives will be of interest.
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